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Diverse and non-Lactobacillus-dominated vaginal microbial communities are
associated with adverse health outcomes such as preterm birth and the acqui-
sition of sexually transmitted infections. Despite the importance of recognizing
and understanding the key risk-associated features of these communities,
their heterogeneous structure and properties remain ill-defined. Clustering
approaches are commonly used to characterize vaginal communities, but
they lack sensitivity and robustness in resolving substructures and revealing
transitions between potential sub-communities. Here, we address this need
with an approach based onmixed membership topic models. Using longitudi-
nal data from cohorts of pregnant and non-pregnant study participants, we
show that topic models more accurately describe sample composition, longi-
tudinal changes, and better predict the loss of Lactobacillus dominance. We
identify several non-Lactobacillus-dominated sub-communities common to
both cohorts and independent of reproductive status. In non-pregnant individ-
uals, we find that the menstrual cycle modulates transitions between and
within sub-communities, as well as the concentrations of half of the cytokines
and 18% of metabolites. Overall, our analyses based on mixed membership
models reveal substructures of vaginal ecosystems which may have important
clinical and biological associations.
1. Introduction
Several critical aspects of women’s health are linked to the structure of the vaginal
microbiota [1–3]. Vaginalmicrobiotas dominated by beneficial Lactobacillus species
are associated with positive health outcomes [3]. A paucity of Lactobacillus and a
diverse array of strict and facultative anaerobes, however, are associated with
negative health outcomes such as preterm birth [4,5] and susceptibility to sexually
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Figure 1. Topic models are mixed membership models and reveal transitions between states. (a) Schematics contrasting sample characterization in a lower dimen-
sional space by clustering methods versus topic models. In both schematics, each dot is a sample. Larger coloured dots in the clustering schematic indicate centroids.
(b) Schematic illustrating how clustering versus topic models would capture a ‘functional equivalence’ phenomenon. Two or more species are potentially ‘functionally
equivalent’ if they occupy the same ecological niche (thrive in similar environments and with other species) but rarely co-occur because they may compete for the
same resources. (c–d) Examples of time-series displays of changes in microbiota composition summarized by cluster membership (sub-CST—top) or topic proportions
(bottom) in a (c) pregnant and (d) non-pregnant participant. Topics were labelled such that their name matched the (sub)CST with the most similar composition
(figure 2c). The height of the topic rectangles codes for the proportion of that topic in samples. Their proportion for a given sample sums to 1.
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transmitted infections [6–9], including HIV [10–12]. Longitudi-
nal studies of vaginal microbiota composition have revealed its
dynamic nature [4,13,14]. In non-pregnant individuals, a vir-
tually complete replacement of the microbiota is sometimes
observed, typically around the time of menses [13,15]. While
complete replacement is rare, more modest (i.e. of a fraction
of the microbiota composition), or slower (i.e. over a few days
or weeks) changes in composition are relatively common in
both pregnant and non-pregnant individuals [4,13,14]. The
microbiota of pregnant women may appear more stable than
that of non-pregnant individuals; however, differences in
sampling frequencies might not allow us to fully characterize
the differences in microbiota dynamics. Non-Lactobacillus-
dominated microbiotas are generally less stable than Lactobacil-
lus-dominated ones [4,13,14]. Some Lactobacillus species, such as
L. crispatus, better resist replacement by non-Lactobacillus
species and create greater vaginal ecosystem stability during
and outside pregnancy [13,14,16]. By contrast, L. iners is more
frequently associated with non-optimal communities
[13,14,16]. Non-optimal vaginal microbiotas (i.e. non-Lactobacil-
lus-dominated microbiotas) are typically highly heterogeneous
within and between individuals [4,13,14]. It remains, however,
poorly understood whether non-optimal microbiota compo-
sition is random (i.e. individual-specific) or composed of
distinct sub-communities (i.e. consortia of bacteria interacting
with each other). If such sub-communities do exist, it remains
to be seen whether they are differentially associated with
characteristics of the host or with specific negative health
outcomes.

Efforts to address these questions have so far relied
on clustering approaches. Various clustering methods are
commonly applied to taxonomic abundance tables to define
community structure. This has led to the adoption of the con-
cepts of community state types (CSTs) or community types
(CTs) [17,18]. More recently, in order to define ‘reference sub-
CSTs’ (i.e. dataset- or study-independent), large composite
datasets have been clustered, and several non-Lactobacillus-
dominated clusters (sub-CSTs) have been identified across
populations of non-pregnant women [19]. While clustering
serves as a useful dimensionality reduction tool for describing
complex microbiota compositions, it may fail to capture
clinically relevant structures. For example, two samples could
belong to the same cluster (III-B) because they both show
a bare majority of L. iners (e.g. 60%), but be accompanied
by L. crispatus in one case, and by a diverse panel of non-
Lactobacillus species in the other case, whichmay have different
health implications. In addition, clustering-based approaches
fail to model transition or intermediary states between clusters
(figure 1). Modelling transitions is especially important in
the context of the vaginal microbiota as its composition may
change several times over a few months, weeks, or even a
few days, as observed in menstruating individuals [4,13–15].
However, because samples are assigned to a single cluster
(figure 1a), transitions between clusters may appear identical
(i.e. described by the same sequence of clusters) while the
underlying microbiota trajectories were drastically different
in rate (progressive versus abrupt) or in the nature of the inter-
mediate compositions. Finally, while clustering approaches can
identify sets of species that frequently co-occur, they are not
well suited to identify subsets of species that may have similar
functions but not frequently found together (figure 1b). The
discrepancies between the clustering assumptions and our
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understanding of the composition and dynamics of the vaginal
microbiota highlight the need for better-suited dimension
reduction statistical models.

Topic models, first developed to infer population structure
[20] and later formally described as latent Dirichlet allocation
(LDA) in the context of natural language processing
[21], have recently been proposed for analysing microbial
communities and identifying sub-communities [22]. Unlike
clustering-based categorization, where samples are assigned
to a single category, samples are modelled as mixtures of
topics (sub-communities), and each topic is characterized by
a particular distribution of bacterial species. For example, if a
sample were described as 70% topic 1 and 30% topic 2, this
would mean that the species subsumed in topic 1 accounted
for 70% of the sample, while the species in topic 2 accounted
for the remaining 30%. Topics may be sparse or include a
larger number of species and some species may belong to sev-
eral topics. In addition to more realistically model microbiota
composition, topic models do not require any normalization
of the count tables (typically the number of 16S rRNA genes
sequenced in each sample) as they are hierarchical Bayesian
models that explicitly account for library sizes.

Here, we sought to deepen our understanding of the fine
structure of non-optimal vaginal microbiotas by applying
topic models to longitudinal samples acquired from pregnant
and non-pregnant women. We compared them to previously
identified reference clusters and investigated the clinical
relevance of the identified sub-communities and their associ-
ation with host characteristics, pregnancy status, the risk of
preterm birth, or the phase of the menstrual cycle. The men-
strual cycle effects on the vaginal ecosystem were further
evaluated by identifying vaginal metabolites (both host-
and bacteria-produced) and cytokines (host-produced) with
differential abundances throughout the cycle.
2. Results
(a) Topic analysis identifies nine sub-communities in

the vaginal microbiota of pregnant and non-
pregnant women

We analysed data from 2179 vaginal samples collected weekly
from 135 pregnant individuals enrolled at two sites in the
USA (Stanford University, Stanford, CA, USA and University
of Alabama, Birmingham, AL, USA) and 1534 vaginal
samples collected daily from 30 non-pregnant individuals
enrolled at the University of Alabama, Birmingham
(see Material and methods; see electronic supplementary
material, table S1 for demographic data). Topic models were
fit to the count data of 16S rRNA amplicon sequence variants
(ASVs) agglomerated by taxonomic assignment.

Topic analysis requires choosing K, the number of topics,
which can be estimated using cross-validation or, as recently
proposed [23], by performing topic alignment across models
with different resolutions (i.e. with different K; figure 2a).
In contrast to cross-validation, this latter approach shows
how topics at higher resolution relate to topics at lower resol-
ution and provides several diagnostic scores. These scores
characterize each topic across degrees of resolution and
allow us to evaluate deviations from the LDA assumptions.
Here, topic alignment suggested that nine topics provided
the best compromise between dimension reduction and
accurate modelling of taxonomic counts (electronic sup-
plementary material, methods; figure 2a,b). If a coarser
resolution were desired, the alignment refinement scores
suggested that K = 5 topics would be the most suited as
topics at higher resolutions were sub-topics of these five
topics (electronic supplementary material; figure 2b).

AtK = 9, four of these nine topics were dominated byone of
the four most common Lactobacillus spp. (L. crispatus, L. gasseri,
L. iners and L. jensenii; figure 2a,b). The composition of the
five remaining topics did not include any Lactobacillus spp.
(figure 2a,b). These five non-Lactobacillus topics could be
grouped into two groups based on the alignment: one group
contained three topics which included Gardnerella, Atopobium
and Megasphaera spp., while the other group contained
Finegoldia, Corynebacterium and Streptococcus (figure 2a,b).
(b) Topics provide a more succinct, yet more accurate,
description of microbiota composition than sub-
CSTs

To evaluate the generalizability of the identified sub-
communities, we compared the topic composition with the
composition of the 12 ‘reference’ sub-CSTs (Valencia centroids)
previously identified in a composite dataset of non-pregnant
individuals’ samples [19] (figure 2c). To compare topics and
clusters, we computed the Bray–Curtis dissimilarities between
their compositions after harmonizing taxonomic assignments
(figure 2c; electronic supplementary material, methods).
Topics were labelled to match their most similar (sub-)CST
(Material and methods; figures 1c,d and 2b). The comparison
showed that two L. crispatus-dominated sub-CSTs (I-A and I-
B) have high similarity with the single L. crispatus-dominated
topic (I). Similarly, two L. iners-dominated sub-CSTs (III-A
and III-B) match a single L. iners-dominated topic (III). This is
because CST I-A and I-B (or III-A and III-B) describe microbio-
tas that are either fully dominated by L. crispatus (subCST I-A)
or L. iners (subCST III-A) versus those partially dominated by
L. crispatus or L. iners and hosting other species (sub-CST I-B
or III-B). By contrast, because topic models allow samples to
be composed of several topics, a single topic is sufficient
to account for L. crispatus (topic I) or L. iners (topic III)
counts. Samples in which L. crispatus co-exists with L. iners
will be represented by a mix of topics I and III, while a
sample where L. crispatus co-exists with a Gardnerella
species by a mix of topics I and IV-A/B. CST II and V have a
one-to-one optimal match with topics II and V.

When comparing non-Lactobacillus sub-CSTs and topics,
we observed that (i) sub-CST IV-A and IV-B are represented
by three topics (IV-A, IV-B.a and IV-B.b), which can, in part,
be explained by differences in taxonomic assignment used for
topics (e.g. Gardnerella species are undifferentiated in sub-
CSTs, while, here, some Gardnerella ASVs were matched to
different species—see electronic supplementary material,
methods), and (ii) a single topic (IV-C1) matches four sub-
CSTs (IV-C1 – IV-C4). This is because these four sub-CSTs
only differ in the proportion of four seemingly mutually
exclusive genera (Streptococcus, Enterococcus, Bifidobacterium
and Staphylococcus), with one of these four genera dominat-
ing each sub-CST; the prevalence of the remaining genera
or species is similar across the four IV-C1-4 sub-CSTs
(electronic supplementary material, figure S1). In our data,
we also observed rare co-occurrence of these four genera
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(electronic supplementary material, methods). Thin lines connect F1 scores from the same training-testing set.
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(electronic supplementary material, figure S2–S3). In the pres-
ence of such mutual exclusion, clustering approaches tend to
create several clusters; by contrast, because topic models
allow for synonyms, topic IV-C1 embeds these species
within a single topic, as illustrated in figure 1b.

We next examined three potential benefits of using topic
mixed memberships instead of clustering categorization
(sub-CSTs). Our first conjecture was that topics would pro-
vide a more accurate representation of sample compositions
than sub-CSTs. The second was that this effect would be pri-
marily driven by samples from unstable microbiotas. Our
third conjecture held that topic memberships would better
predict whether an individual is at risk of losing Lactobacillus
dominance at the next time-point.

To test our first conjecture (i.e. accuracy of representation),
we compared the Bray–Curtis dissimilarity between the actual
sample compositions and the sample compositions predicted
by topic mixed memberships or by sub-CST membership.
The predicted composition of a sample is either the compo-
sition of the centroid of the sample’s sub-CST or the average
topic composition (displayed in figure 2b) weighted by the
proportion of each topic in that sample (Material and
methods). The Bray–Curtis dissimilarity between actual
and predicted sample composition was smaller when
sample compositions were predicted by topics (figure 2d ).
This effect was stronger in pregnant participants (mean
difference = 0.12, paired t-test p-value < 0.001) than in non-
pregnant participants (mean difference = 0.02, p-value <
0.001). The smaller mean difference in non-pregnant
women compared to pregnant women can partially be
explained by samples belonging to sub-CSTs IV-C1-4. These
samples were dominated by one of the four seeminglymutually
exclusive species mentioned above (Streptococcus, Enterococcus,
Bifidobacterium and Staphylococcus), considered synonyms in
topic models, and found in a single topic. When omitting
these samples, the mean difference in dissimilarity in
non-pregnant women increased from 0.02 to 0.07 (electronic
supplementary material).

Our second conjecture was that the composition of
samples from stable microbiotas (i.e. their composition
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remains largely unchanged over time) would be equally well
described by sub-CSTs or by topics because these microbiotas
would have stabilized over robust sub-communities well cap-
tured by clustering approaches. By contrast, we expected that
samples from unstable microbiotas would be better described
by topic mixed memberships because the transitions between
well-defined sub-communities can be better captured by
varying memberships. Our results supported this expectation
in pregnant participants, but not in non-pregnant partici-
pants (electronic supplementary material, figure S4). This
was tested using the Bray–Curtis dissimilarities computed
above and comparing their differences (sub-CSTs versus
topics) in samples from stable versus unstable microbiotas.
Samples were considered stable if they belonged to a group
of at least five consecutive samples whose Bray–Curtis dis-
similarity was less than 0.25 (similar results were obtained
for 0.15 and 0.35—see electronic supplementary material,
table S2) and were considered unstable otherwise. In preg-
nant participants, the mean difference in dissimilarities was
0.08 for samples from stable microbiotas and 0.14 for samples
from unstable microbiotas (one-sided t-test p-value < 0.001).
In non-pregnant participants, these differences were small
and approximately the same in samples from both stable
(0.03) and unstable (0.02) microbiotas.

We next evaluated our third conjecture: topic member-
ships would better identify individuals at risk of losing
Lactobacillus dominance, defined here as overall Lactobacillus
proportions falling below 50%. Past studies have shown that
individuals whose microbiota is categorized as CST III
(L. iners-dominated) are more at risk of losing Lactobacillus
dominance than those in other Lactobacillus-dominated CSTs
(I, II and V) [14,16] but this risk has not been evaluated with
a more refined definition of microbiota composition. To do
so, we trained and 10×-cross-validated logistic regression
models to predict the loss of Lactobacillus dominance (Material
and methods). Since only 11% of Lactobacillus-dominated
microbiotas switch to non-Lactobacillus-dominated ones
(i.e. we are predicting rare events), F1 scores (harmonic
mean of precision and sensitivity) were used to compare pre-
diction performances (figure 2e). Topic memberships better
predicted the risk of losing Lactobacillus dominance than
sub-CST (median F1 score of 0.4 versus 0.27, Wilcoxon test
p-value < 0.002). Specifically, topic-based predictions are
more precise (i.e. lower false positive rate) than sub-CST-
based predictions (precision of 0.26 versus 0.16, p-value <
0.002, electronic supplementary material, figure S5).

Given these results and the three advantages conferred by
topic models, we next explored the demographic associations
and functional relevance of the identified sub-communities.

(c) Topic composition varies with demographic
characteristics and pregnancy status

Samples were collected from three cohorts: non-pregnant
women recruited at the University of Alabama Birmingham
in 2009–2010, pregnant women recruited at the same insti-
tution in 2013–2015, and pregnant women recruited at
Stanford University in 2013–2015. Recruitment sites and par-
ticipants’ race were associated with differential proportions of
several topics. The microbiotas of Black participants and par-
ticipants recruited at UAB were more likely to contain topics
III (L. iners-dominated), IV-A and IV-B.a (both non-Lactobacil-
lus-dominated) (figure 3a–c). Topics III and IV-A were also
more prevalent in pregnant participants, while topics IV-B.b
and IV-C1 were less prevalent in non-pregnant participants
(figure 3a–c).
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(d) Topics IV-C0 and IV-C1 increase during menses;
topic IV-C1 is also associated with preterm birth

The proportions of both topics IV-C0 and IV-C1 increased
during menses ( p-values < 0.001 and 0.01 resp.; figure 3c).
By contrast, the proportion of topic I (L. crispatus-dominated)
decreased during menses ( p-value < 0.01). Consistent with
previous findings [4], topic I (L. crispatus-dominated) was
associated with term delivery, while topic IV-C1 had a
strong association with preterm delivery, although not
passing the significance threshold ( p = 0.051).
(e) The menstrual cycle shapes the vaginal microbial
composition

Prompted by the observation that the proportions of several
topics varied with the menstrual cycle, we investigated longi-
tudinal associations between menstrual cycle and microbiota
composition. Among the 30 non-pregnant participants, 26
had reported vaginal bleeding allowing the identification of
at least one menstrual cycle and we had data over two con-
secutive cycles for 20 participants (Material and methods).
Cycles were standardized from 18 days before menses to 7
days after first day of menses as the luteal phase (after ovu-
lation) vary less in duration than the follicular phase
(before ovulation) [24,25] (figure 4a; Material and methods).

When characterized by sub-CST membership, the vaginal
microbiota structure of only 2/20 participants (10%) showed a
statistically significant agreement between consecutive cycles
(electronic supplementary material, figure S6) as measured
by the RV coefficient (adj. p-value < 0.05, electronic sup-
plementary material, methods). When characterized by topic
mixed membership, that proportion doubled (20% - 4/20
participants; figure 4b–d). However, within-subcommunity
changes were still frequent. Indeed, for six additional partici-
pants, although the topic proportions remained relatively
stable throughout their cycle, the underlying taxa composition
varied (e.g. participant UAB077; figure 4d,e). In total, half (10/
20) of the participants had a statistically significant agreement
between their taxa proportions in two consecutive cycles
(figure 4b, right panel).

Prompted by the observation that the menstrual cycle is
associatedwith longitudinal variations of themicrobiotacompo-
sition,we further investigatedwhether thevaginal environment,
characterized bypHvalues andvaginalmetabolite and cytokine
concentrations, also varied with the cycle. Consistent with past
results [17], the vaginal pH of Lactobacillus-dominated samples
(i.e. proportions of Lactobacillus >50%) was lower (4.4, 90% 4.0–
5.3) than that of non-Lactobacillus-dominated samples (5.0, 90%
4.0–5.8). The pH remained stable throughout the cycle
(Lactobacillus-dominated: 4.3, 90% 4.0–5.3; non-Lactobacillus-
dominated: 4.9, 90% 4.0–5.5), except during menses when
it increased by about 0.5 units in Lactobacillus-dominated
(4.7, 90% 4.0–5.8) and non-Lactobacillus-dominated samples
(5.4, 90% 4.4–7.0) (figure 5a).

Half of the cytokines (10 out of 20, p-values < 0.01,
adjusted for multiple testing) showed a significant association
with the menstrual cycle. Most cytokines (e.g. IL6 or TNFα)
peaked during menses, while two of them (IFNγ and IL13)
showed elevated abundance about the time of ovulation
(figure 5b; electronic supplementary material, figure S7). In
total, 18% of metabolites (60 out of 336) were also signifi-
cantly associated with the menstrual cycle (figure 5c;
electronic supplementary material, figure S8). Most (72%)
had increased or decreased abundances in the late luteal
phase or during menses (i.e. between cycle day −3 and 5;
electronic supplementary material, figure S8).
3. Discussion
In this study, we used topic models, a mixed membership
method, to identify bacterial sub-communities within vaginal
microbiota samples from both pregnant and non-pregnant
US women. We identified four Lactobacillus-dominated
sub-communities corresponding to the four Lactobacillus-
dominated CST, and five non-Lactobacillus sub-communities
(i.e. topics), refining the structure of samples traditionally
assigned to CST IV [17]. This CST (CST IV) is particularly



5.5

(a) (b) (c)

100.0

co
nc

en
tr

at
io

n 
(p

g
m

L
–1

)

10.0

1.0

0.1

100.0

10.0

1.0

0.1

1 × 103

1 × 102

1 × 10
1

1 × 10–1

100.0

10.0

1.0

0.1

–14 –7

MIP3

TNF

IFN

0 7

22.5

20.0

17.5

15.0

27
26
25
24
23
22

22
26

24

22

22

20

18

tr
an

sf
or

m
ed

 a
bu

nd
an

ce
s

20

18

16

28

26
27

25
24

–14 –7

3-phosphoglycerate betaine

guanine

kynurenine

fumarate

isoleucine

0 7–14 –7 0 7

–14 –7 0 7 –14 –7 0 7

–14 –7 0 7–14 –7 0 7
cycleday

–14 –7 0 7

–14 –7
cycleday

0 7–14

co
nc

en
tr

at
io

n
(p

g
m

l–1
)

–7

IL6

cycleday
0 7

5.0

PH

4.5

4.0

–14 –7
cycleday

non-lacto lacto

0 7

Figure 5. Vaginal pH, cytokines and metabolites throughout the menstrual cycle. (a) Distribution of vaginal pH throughout the menstrual cycle in Lactobacillus-
dominated samples (blue) and non-Lactobacillus-dominated samples (orange). Dots indicate the means, shaded vertical bars span the 25th–75th percentiles. (b,c)
Concentration ( y-axis) of four cytokines (b) and six metabolites (c) with significant variations throughout the menstrual cycle (x-axis). Each dot is a sample.

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20231461

7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

29
 N

ov
em

be
r 

20
23

 

relevant clinically as a paucity of Lactobacillus species is
associated with bacterial vaginosis (BV), an increased risk
of preterm birth, and a higher susceptibility to acquiring
sexually transmissible infections [3–6,10–12,14].

These five non-Lactobacillus sub-communities were found to
belong to two groups. One group contained three topics (IV-A,
IV-B.a and IV-B.b) and characterized by the co-occurrence
of species from the Gardnerella, Megasphaera, Atopobium,
Fastidiosipila and Sneathia genera, and Prevotella amnii. The other
group contained two topics (IV-C0 and IV-C1). This group con-
tained species from theCorynebacterium, Finegoldia,Peptoniphilus,
Bifidobacterium, Staphylococcus and Streptococcus genera, and
Prevotella bivia/denticola and timonensis. These two groups of
topics align with previously identified sub-groups resulting
from clustering a large collated dataset of non-pregnant
women samples [19]: sub-CST IV-A and B belong to the first
group, and sub-CSTs IV-C0-4 to the second group. This study
thus confirms that non-Lactobacillus-dominated microbiotas
present sub-structures that may have clinical relevance.

The main difference between the approach used here
(topic analysis) and clustering approaches traditionally used
to identify sub-groups in the vaginal microbiota lies in the
mixed membership nature of topic models, thereby allowing
samples to be associated with multiple topics in different pro-
portions. This property offers the advantage of revealing
longitudinal transitions between sub-communities and the
rate at which they occur, which is impossible with clustering
approaches. We showed here that, in pregnant participants,
stable microbiotas were almost equally well characterized
by clusters and topics; by contrast, unstable microbiotas
compositions were better represented by mixed topic mem-
berships than by sub-CSTs. Topic memberships could also
better predict the risk that a participant’s microbiota would
lose its Lactobacillus dominance and switch to a sub-optimal
microbiota composition.

In this study, we compared topic- and clustering-based
sample descriptions in cases in which sub-communities
(mixed) memberships were used as explanatory variables;
the actual microbiota composition or the risk of losing
Lactobacillus dominance were our response variables. We
expect that colleagues might also find advantages in using
sub-community mixed memberships (topic-based sample
description) as a multivariate response variable to identify
host or intervention related factors associated with specific
transitions or intermediate states. In contrast to univariate
alternative or clustering, this might better reflect the potential
multiple etiologies of vaginal dysbiosis.

Another difference between topic models and clustering
approaches is that topic models allow for ‘synonyms’, which
may reflect potential functional equivalences in a microbial
community context. Indeed, if two species are found inter-
changeably (but not simultaneously) with a specific
combination of other species, these two species will be found
in the same topic. By contrast, clustering approaches tend to
create two clusters (one containing each species) potentially
artificially increasing the number of functionally relevant
sub-communities. This matches our observations as a single
topic encapsulates four sub-CSTs (IV-C1-4) [19] characterized
by four mutually exclusive genera that co-occur with the
same set of other species. In sub-community IV-C1 (and
subCST IV-C1 – IV-C4), these four genera are Streptococcus,
Enterococcus, Bifidobacterium and Staphylococcus and these
sub-communities are found with higher prevalence in
non-pregnant individuals, often during menses.

Topic models used in this study are unsupervised
methods, and, like clustering, topic models identify dataset-
specific features. This means that sub-communities identified
in samples from a different cohort may differ from those
identified in this study. However, we expect these sub-com-
munities to be reproducibly observed in other (North
American) populations since the sub-communities revealed
by our analysis were found in individuals from three distinct
cohorts, encompassing both pregnant and non-pregnant indi-
viduals from two distinct North American sites. Further,
the agreement between our topics and the composition of
‘reference sub-CSTs’ previously identified in non-pregnant
individuals [19] supports the generalizability of our findings.
Deeper sequencing methods (e.g. metagenomics) may allow
a more precise taxonomic characterization of microbiota
samples and further refinement of these sub-communities.

To evaluate the functional or clinical relevance of these
sub-communities, we performed a series of analyses to inves-
tigate the associations with demographic, clinical variables or
outcomes. We found several significant associations between
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these subcommunities and the demographic characteristics or
reproductive status of participants. Specifically, Black women
were more likely to have a microbiota containing L. iners
(topic III) and non-Lactobacillus subcommunities from the
first group (topics IV-A, IV-B.a and IV-B.b). Regarding differ-
ences associated with participants’ reproductive state, non-
Lactobacillus topics from the second group (topics IV-C0 and
IV-C1) were more prevalent in non-pregnant individuals
than in pregnant women. They were especially more frequent
during menses, a time characterized by elevated vaginal
inflammation, as 40% of the measured cytokines had higher
concentrations during menses. In pregnant individuals,
topic IV-C1 showed a strong, but not reaching significance
( p = 0.051), association with the risk of preterm birth. It
remains to be seen whether vaginal inflammation is also elev-
ated in pregnant individuals with a higher abundance of this
sub-community. Our available data did not allow us to
answer this question.

As stated above, mixed membership models provide
better insights into the longitudinal changes in microbiota
composition than cluster membership approaches do. Another
example comes from the analysis of samples from consecutive
menstrual cycles. When investigating whether menstruating
participants have similar microbiota variations in consecutive
cycles, an analysis based on clustering membership only
identified significant between-cycle correlations in two partici-
pants (10%). By contrast, the same analysis based on topic
mixed memberships identified significant correlations in four
participants (20%). While these results further demonstrate
that topic models provide useful dimension reduction, we
note that mixed membership representations may still hide
important within-subcommunity variations. Here, repeating
that analysis using compositional data at the taxa level
showed that, in fact, 10 (50% of) menstruating participants
had significant between-cycle correlations.

While the menstrual cycle appears to have a strong effect
on the microbiota composition, we note that most topics or
taxa reached their maximal relative abundance at different
menstrual cycle phases across individuals. These inter-indi-
vidual differences may be an artefact of the compositional
nature of our data but could also be due to differences in
ovulation timing or in hormone levels or to interactions
between specific species or sub-communities. Additional
studies would be necessary to disentangle these potential
causes or to understand if abrupt hormonal changes, the
presence of blood, or the use of menstrual protections such
as pads or tampons drive the substantial changes in
microbiota composition observed during menses.

Finally, to understand whether these menstrual variations
in microbiota composition were accompanied by changes
in the vaginal ecosystem, we analysed the vaginal pH, cyto-
kine concentrations, and metabolite concentrations obtained
from a subset of the sequenced samples. We found that the
abrupt changes in microbiota composition around menses
were indeed accompanied by changes in these variables.
pH increased during menses in both Lactobacillus and
non-Lactobacillus-dominated microbiotas, and as mentioned
above, 8 out of 20 measured cytokines had elevated levels
during menses (and 2 around ovulation) while 70% of the
60 metabolites that varied with the menstrual cycle peaked
or dropped during menses. For example, kynurenine peaked
during menses while isoleucine dropped. Kynurenine is a
tryptophan catabolite via a pathway involving IDO1-mediated
degradation. It is known to play a role in blood vessel dilatation
during inflammatory events [26]. The elevated levels of kynur-
enine during menses found in our study are thus consistent
with these roles and with past studies showing varying
levels of kynurenine in serum and urine through the cycle
[27,28]. In our vaginal samples, isoleucine, a branched-chain
amino acid with important metabolic functions [29], was
found with the highest levels in the luteal phase and lowest
during menses. Interestingly, serum levels of isoleucine show
opposite trends [30]. The menstrual changes in cytokine con-
centrations were consistent with those identified previously
in non-pregnant individuals [31,32].
4. Conclusion
Topic analysis revealed bacterial sub-communities (topics)
shared across pregnant and non-pregnant women, confirming
the existence of sub-structures in non-Lactobacillus-dominated
microbiota and their possible clinical relevance. Compared
to clustering approaches traditionally used to categorize
microbial composition, topics provide an expanded character-
ization of the heterogeneity of the previously described
risk-associated CST IV, a high-resolution view of transitions
between communities, and they better predict the loss of
Lactobacillus dominance. We found that the menstrual cycle
had a strong impact on the vaginal microbiota and on vaginal
levels of 60 metabolites and half (10/20) of the measured
cytokines. Of particular interest, one sub-community with
increased prevalence duringmenses, a time of elevated vaginal
inflammation, was also found to have a strong, although not
quite significant ( p = 0.051), association with the preterm
birth risk. This may inspire the design of better-powered or
in vitro studies to further investigate the functions of these
sub-communities, their ecological network and their effects
on the vaginal epithelium.
5. Material and methods
(a) Cohorts and sample collection
(i) Daily samples from non-pregnant participants
Samples were obtained from 30 participants recruited at
the University of Alabama, Birmingham (UAB) as part of the
UMB-HMP study, which enrolled participants regardless of BV
diagnosis between 2009 and 2010 [15] and in which participants
with symptomatic BV were treated using standard-of-care prac-
tices [15]. The 30 participants selected for this analysis included
women with stable Lactobacillus-dominated microbiotas, stable
non-Lactobacillus-dominated microbiotas and unstable microbio-
tas. Participants self-collected daily vaginal swabs for 10
weeks, resulting in a maximum of 10 × 7 = 70 samples per
individual. For further details, see [15].

(ii) Weekly samples from pregnant women
We used the samples from two cohorts presented previously [4]. In
total, 39 pregnant individuals were recruited at StanfordUniversity
(SU), and 96 pregnant individuals were recruited at the University
of Alabama, Birmingham (UAB) between 2013 and 2015. Partici-
pants from both cohorts were enrolled from the fourth month of
their pregnancy (range: week 8–22), and vaginal swabs were
collected weekly (approximately) until delivery with an average
of 16 samples per participant and 2179 samples in total. Age,
BMI and race were significantly different between the two
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cohorts (electronic supplementary material, table S1). Participants
recruited at UAB were part of a pool of individuals for which
intramuscular progesterone injections (17-OHPC) were indicated
or recommended. They received that treatment throughout
pregnancy with the intention of reducing their preterm birth risk.
9/39 (23%, SU) and 41/96 (43%, UAB) participants delivered
preterm, defined as a delivery before 37 weeks of gestation.

(iii) Metabolite and cytokine samples
Metabolites and cytokine concentrations were quantified in a
subset of the non-pregnant samples. Specifically, five samples
separated by approximately two weeks were selected per partici-
pant. In addition, five samples each were from 10 additional
non-pregnant participants of the UMB-HMP study but recruited
at different sites (Emory University and the University of
Maryland Baltimore). In total, metabolites and cytokines were
quantified in 200 samples from 40 non-pregnant individuals.

(b) Vaginal microbiota sequencing
(i) Daily samples from the 30 non-pregnant participants

recruited at UAB (1534 samples)
The V3-V4 regions of the 16S rRNA gene were amplified and
then sequenced with the Illumina HiSeq/MiSeq platforms.

(ii) Weekly samples from pregnant participants of both cohorts
(SU and UAB) (2179 samples)

Raw sequence data from samples from pregnant participants were
generated and processed as described in [4]. In brief, genomic
DNA was extracted from vaginal samples using a PowerSoil
DNA isolation kit (MO BIO Laboratories). Barcoded primers
515F/806R [33] were used to amplify the V4 variable region of
the 16S rRNA gene from each sample. Pooled amplicons were
sequenced on the Illumina HiSeq platforms at the Roy J. Carver
Biotechnology Center, University of Illinois, Urbana-Champaign.

Demultiplexed raw sequence data from Illumina HiSeq/
MiSeq were resolved to ASVs as described in the DADA2
Workflow (https://benjjneb.github.io/dada2/bigdata.html) [34].

(iii) Taxonomic assignment
Automated taxonomic calls were made using DADA2’s
implementation of the RDP naive Bayesian classifier [35] and a
Silva reference database (version 132) [36]. The assignment of
sequences of the most abundant ASVs were refined and standar-
dized by using BLAST and NCBI RefSeq type strains. This is the
case for Lactobacillus, Candidatus Lachnocurva vaginae (previously
referred to as BVAB1), Gardnerella, andMegasphaera lornae species-
level assignments, following recently published work on these
species [37,38]. Gardnerella ASVs were tagged as G1, G2 or
G3 sensu [4] based on exact matching of the ASV sequences.
Taxonomic assignment tables are available (see data availability
section). For downstream analyses, ASV counts were aggregated
based on their taxonomic assignment.

(c) Metabolite concentration quantification
Untargeted metabolomics was performed on 200 non-pregnant
participant samples by ultra-high-performance liquid chromato-
graphy/tandem mass spectrometry (Metabolon, Inc.). Metabolite
identification was performed at Metabolon based on an internally
validated compound library, and results were expressed in relative
concentrations, following the same protocol as in [39]. Samples
were shipped and analysed in a single batch. Raw data included
853 metabolites, with, however a large proportion of missing
values. Missing values may originate (i) from peak misalignment,
(ii) because of concentrations lower than the detection limit or
(iii) because the overall quality of a sample was low. Metabolites
with missing values in more than 50% of samples were excluded
from the analysis (removing 517 metabolites). Samples with
more than 60% missing data for the remaining 336 metabolites
were further excluded. Raw metabolite relative concentrations
were transformed using a variance stabilizing method [40].

(d) Cytokine concentration quantification
Vaginal cytokines were quantified in the 200 non-pregnant partici-
pant samples using a Luminex-based assay with a custom kit of 20
analytes (IFNγ, IL-1α, IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70,
IL-13, IL-17, IL-21, IL-23, IP-10, ITAC, MIG, MIP-1α, MIP-1β,
MIP-3α and TNFα) following the same protocol as in [12]. The
assay was run on a Luminex FLEXMAP three-dimensional instru-
ment. Measurements below the limit of quantification for a given
cytokine were imputed at half the lower limit of quantification
(LLOQ/2). Measurements above the limit of quantification for a
given cytokinewere imputed as equal to the upper limit of quanti-
fication (ULOQ). Values reported here represent medians of two
technical replicates, calculated after imputation. Missing cytokine
values (11/4000 = 0.275%) represent technical failures of the
assay for that analyte. Concentrations were log-transformed for
downstream analyses.

(e) Integration into a multi-assay experiment object
All analyses were performed in the R software environment [41].
Packages used for the analyses are referred to in the next sections.
Raw datasets were loaded and minimally processed before
being formatted into SummarizeExperiment objects [42], then
combined into a single S4 object using the MultiAssayExperiment
package [43].

( f ) Identifying bacterial sub-communities using topic
analysis

Microbial communities were estimated using LDAmodels [21,22].
Modelswere fitted to the data for K (the number of topics) = 1 to 25
using the R package ‘topicmodels’ [44]. Models were fitted on the
taxonomically agglomerated ASV counts directly, without any
prior normalization; the library size being one of the parameters
of this Bayesian framework. Topics were aligned across K using
the alto package and topic alignment method described in [23].
Optimal K was chosen to maximize topic coherence score [23].

(g) Comparison of topic and sub-CST composition and
sample assignment to sub-CST

Both sub-CSTs centroids [19] and topics are compositional (pro-
portions sum to 1 per sub-CST/topic). They were compared
based on their pairwise Bray–Curtis dissimilarity. Prior to comput-
ing their similarity, we harmonized taxonomic assignments using
the ValenciaR package. For example, sub-CST taxonomy does
not differentiate between Gardnerella species so Gardnerella topic
proportions were aggregated. Samples were assigned to the
sub-CST that maximizes the Yue and Clayton similarity between
the sample composition and the sub-CST centroids, as per [19].

(h) Microbiota composition prediction from sub-CST and
topic membership

To evaluate howwell sample compositionwas represented by sub-
CST categories (fixed composition) or topics (fewer topics than
sub-CSTs, but mixed memberships), we compared the Bray–
Curtis dissimilarity between the actual sample compositions and
those predicted by topic or sub-CST membership(s). For sub-
CST, the sample’s predicted composition is the composition of its

https://benjjneb.github.io/dada2/bigdata.html
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sub-CST centroid. For topics, it is the average of topics composition
(displayed in figure 2b) weighted by the proportion of each topic in
that sample (i.e. p̂i,j ¼ PK

k ¼ 1 gi,k bk,j where p̂i,j is the predicted
proportion of taxa j in sample i, k the topic index, gi,k the proportion
of topic k in sample i and bk,j the proportion of taxa j in topic k).

(i) Microbiota local stability
Samples were classified as belonging to a stable microbiota if
they were part of a series of five consecutive samples with a
Bray–Curtis dissimilarity smaller than 0.25 (0.15 and 0.35 also
considered in sensitivity analysis). Otherwise, the microbiota
was considered unstable.

( j) Predicting the risk of losing lactobacillus dominance
To predict the risk of losing Lactobacillus dominance at the next
time-point in participants’ longitudinal time series, logistic
regression models were fitted to the data. Explanatory variables
were the sample sub-CSTor the sample topic proportion at the cur-
rent time point. The response variable was a binary variable
indicating if the next sample had greater than 50% Lactobacillus
(dominance). Models were fitted on a training set (a random
sample comprising 80% of the total dataset) and prediction
performances evaluated on the remaining 20% of the dataset.
The procedure was repeated independently 10 times. Because
the loss of Lactobacillus dominance is rare (approx. 10% of cases),
we weighted the sample to give more weight (10-fold) to the
minority class when training the models, and used the F1
score (harmonic mean between precision and sensitivity) for
performance evaluation. Differences in the sub-CST- versus
topic-based prediction performances were tested with a Wilcoxon
rank sum test.

(k) Associations between topic composition and
demographic variables

A Dirichlet regression was used to test if race, study site, or preg-
nancy were associated with differential topic proportions.
Because most participants’ race was Black or White, we defined
a three-category variable: Black, Other and White (‘Other’ served
as reference). Pregnancy and site were binary variables (pregnant
versus non-pregnant and SU versus UAB). The model is
p ¼ b þ aRR þ aPP þ aSS þ 1 where p is the vector of topic
proportions lying on the K-dimension simplex. Coefficients were
obtained using the DirichletReg package in R [45].

(l) Identification of phases of the menstrual cycle
Menstrual cycles were identified from bleeding flows reported
daily by participants on a scale from 0 (none) to 3 (heavy).
A hidden semi-Markovmodel was specified to account for empiri-
cally observed distributions of cycle length and bleeding patterns
across the menstrual cycle, including spotting between menses
[46]. Data of participants who reported too few dayswith bleeding
(i.e. less than 3/70 study days) or too many (i.e. more than 30/70
study days) were excluded from the menstrual cycle analyses. To
allow for between cycle comparisons and account for variable
cycle lengths, menstrual timing was standardized following rec-
ommendations for studying menstrual cycle effects [25]. These
recommendations account for well-documented larger variations
in follicular phase durations than in luteal phase durations and
optimally align ovulation across cycles in the absence of hormonal
and/or ovulation markers. In brief, once cycles were identified
(see electronic supplementarymaterial, figure S9), days were num-
bered forwards and backwards from the first day of the period.
Cycles were then standardized from day −18 (i.e. 18 days before
menses) to day +7 (i.e. 7 days after the first day of menses).
(m) Testing for differential abundance throughout the
menstrual cycle

To identify metabolites, cytokines or topics with differential
abundance (metabolites or cytokines) or differential probabilities
of being present at specific phases of the menstrual cycle, a linear
model (for abundances) or logistic regression (proportions) was
fitted to circular splines parameterized with 4 d.f. (R package
‘pbs’). ANOVA p-values were corrected for multiple testing
using the Benjamini–Hochberg method.

(n) Associations between topic proportions and preterm
birth

To test if topic proportions were associated with preterm birth,
a logistic regression model was fitted on the data. Explanatory
variables were the per-participant topic proportion averages, and
the response variable was a binary variable indicating whether
participants delivered preterm or not.

(o) Correlation in vaginal microbiota composition
between two consecutive cycles

To evaluate how the menstrual cycle affects the vaginal microbiota
composition, we computed the RV coefficient [47] and associated
permutation test p-value [48] between the topic or taxa proportions
of the first cycle andof the second cycle. To quantify themagnitude
of change in microbiota composition throughout the cycle (x-axes
of figure 4b), we first computed the average topic or taxa pro-
portion across cycles for each cycleday. Then, pairwise Bray–
Curtis dissimilarities were computed so that the average compo-
sitions of each cycleday were compared against each other. The
maximum value was used to quantify the magnitude of change
throughout the menstrual cycle for each participant.
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